主页 > 句子说说 > 正文

精选罗素悖论的作用111句

2023-08-05 12:44:19 来源:海螺个性网 点击:

罗素悖论解决

1、罗素悖论解决方法

(1)、我在这里要表达两个观点,第一个:上帝所“不能”也属于上帝所“能”的范畴。

(2)、有一本书叫《创新者的窘境》,提出了一个让大企业困惑的悖论,全书就是在阐述这个悖论和试图回答这个悖论:大公司之所以被颠覆不是因为他们管理不善,而是因为他们管理的太优秀了!

(3)、不可判定命题,尽管有些让人不舒服,但不足以构成一个悖论,从而完全毁掉一个逻辑系统。

(4)、数学中研究的任何一个客体对象都称为一个类。类的概念是没有任何限制。类与类之间可能存在着一种称为属于的关系,类A属于类B,此时也称类A是类B的一个元素(简称为元)。

(5)、不知是否是受罪所致,罗素在厚厚的自传中只有两处提到哥德尔,且不无“差评”。其中一处认为哥德尔相信天堂里有一个永恒的“否”字,真正的逻辑学家在死后可以遇到(罗素自己似乎提前遇到了)。罗素将之称为哲学上的“德国偏见”(Germanybias),并表示了失望(注十)。另一处则是援引了自己给一位“女粉丝”的信(注十一)。那位“女粉丝”盛赞了《数学原理》,罗素在信中感谢道:“哥德尔的追随者几乎使我相信为《数学原理》所花的20人年(man-years)已成浪费,那书也最好被忘记,发现您并不这么看是一种安慰。”——说是安慰,也不无酸楚吧。

(6)、意思就是,当罗素集合是它自身的成员时,它就不是自身的成员;当它不是自身成员时,它就又是自身的成员了……它就像尴尬的小丑乔治,在宴会的门口进退两难,不知所措。

(7)、不过我得说说罗素自己的解决办法。让我们回到说谎者悖论,想想悖论是怎么产生的?先来看这样一个句子:

(8)、“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”

(9)、读者可以很容易联想到那个用形式语言表示的罗素悖论,不就正好是说谎者悖论的形式化表达!

(10)、公理化集合系统,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。

(11)、聪明的读者可能发现了,如果我们将“这不是真理”带入“这”就会产生悖论(和罗素悖论一样)。也就是说,“这不是真理”这句话可以谈论任何的东西(“这”可以带入任何东西),唯独不能谈论自身,否则就会产生悖论。我们把这种谈论自身的行为称为“自指”,自指是产生悖论的一个条件。(另一个条件是否定,读者可以自行证明)

(12)、去年,华为公司的IT与流程优化部通过与E公司的业界最佳实践对标,针对五个方面,提出“5个1”目标:合同前处理周期(1天),供应链备货周期,从发货到站点周期(1周),软件上载周期(1分钟),以及合同交付周期(1个月)。华为公司计划用5年时间(E公司用了8年),实现“5个1”目标,使自己真正进入世界领先企业行列。

(13)、三是如何实现从以功能部门为中心的运作方式,向以项目为中心的运作方式转变。真正实现“让听得到炮声的人呼唤炮火”的机会拉动式运作方式;

(14)、再比如最近很火的电视剧《以人民的名义》,我看过一些评论,有正面评价此剧的效果的,也有批判这种正面评价的,之后又会出现批判这种批判的评论,这不也是人类思维不断跳出系统的一种表现么?

(15)、在世纪之交,卓越的分析哲学家伯特兰·罗素(BertrandRussell),发现这一概念(即,自含集合)中的一个严重问题,被称为“罗素悖论”。

(16)、不过,道高一尺魔高一丈,当病毒能制造出这些特殊标记后便能成功地摧毁被攻击的细胞。

(17)、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。

(18)、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。

(19)、但是,这一切并非没有代价,那代价就是推理的极度曲折和冗长。比方说,“1”这个小学数学第一课的内容在《数学原理》中直到第363页才被定义;1+1这个最简单的小学算术题直到第379页才有答案。比这种曲折和冗长更糟糕的,是《数学原理》虽然是逻辑主义的高峰,却在一定程度上背离了逻辑主义的初衷,即借助逻辑所具有的自明性(self-evidence)来构筑数学。在《数学原理》中,罗素和怀特海引进了几条不仅不自明,甚至未必能算逻辑的公理,比如无穷公理(axiomofinfinity)、选择公理(axiomofchoice),以及可化归性公理(axiomofreducibility)。这其中无穷公理和选择公理在集合论中也采用,倒还罢了,可化归性公理则完全是另类。《数学原理》的这一特点——尤其是可化归性公理——遭到了猛烈批评,批评者包括第一流的数学家、逻辑学家和哲学家,几乎是数学基础研究的一个明星阵容。

(20)、在类的公理体系中,有一些基本的概念是不加定义的,我们只能从其客观含义上给予解释,但这样的解释仅仅起到帮助理解这些概念。

2、罗素悖论的作用

(1)、如果这个集合不包含自身 (A∉A) ,那么,按照定义A是不包含自身的集合组成集合,即A∈{x∉x},那么A应该包含自身,也就是说A∈A.

(2)、而1901年,罗素提出了一个著名的悖论,产生了爆炸性的效果,因为这个悖论植根于集合论,一经提出,相当于从根本上否定了集合论的完备性。

(3)、现在问题就来了,因为x是变元,理论上我们可以将其替换成任何元素,那么我们将S代入进去,得到S∉S,因此S∈S;反过来如果S∈S,则S∉S。这和说谎者悖论如出一辙啊!

(4)、罗素悖论之所以在当时的数学界与逻辑界内引起了极大震动,是因为它说明现代数学的基础——集合论——是有漏洞的,这样岂不是一切建立于集合论的数学证明都站不住脚了?可以说罗素悖论的出现,让“数学”这座大楼的地基被动摇了,也难怪会引发数学界的一场重大危机。

(5)、这使得朴素集合论自相矛盾(inconsistent):我们有一个陈述,它必须同时既是真的,又是假的。

(6)、在概率论(probabilitytheory)中,我们将“事件”(events)考虑为诸多结果的集合(setsofoutcomes);所以诸多事件的聚集,也是一个大集合,由其他集合构成。

(7)、这个悖论,以及产生自“自含集合”(setsthatcontainthemselvesasmembers),和产生自巨大的、不充分定义的“所有事物”之集合的其他难题,使得我们必须重新审视“集合”这个概念:它要更加正式,并且基于公理。

(8)、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!

(9)、其实,梅拉那部书是很大的,6卷9册5,000多页,恐怕是有史以来最大的科学史专著,照卡利马科斯的说法,罪是小不了的。倒是罗素的“谦虚”还稍有些道理,因为《西方的智慧》并不是他最大的书,他有一部大得多的书叫做《数学原理》(PrincipiaMathematica),3卷近2,000页,那才是“大罪”。不过那恐怕不是书之罪,而是书带给作者的罪——那部大书着实让作为主要作者的罗素受了“大罪”。

(10)、第二桩跟家庭有关,且同样发生得很突然。据罗素自己回忆,1902年春天的一个下午,他在一条乡间小路上骑车,忽然“顿悟”到自己已不爱结婚八年的妻子了。那是一个最符合字面意义的“顿悟”,因为在那之前他甚至没有觉察到对妻子的爱有任何减弱。连减弱都没有,突然就消失了,天才人物的“顿悟”出现在不该出现的地方时,看来是很有些可怕的。罗素的妻子爱丽丝·皮尔索尔·史密斯(AlysPearsallSmith)比罗素大5岁,罗素17岁时结识了她,22岁时将“姐弟恋”修成正果,“七年之痒”时因“顿悟”而陷入困境,但在爱丽丝一度以自杀为威胁的抗争下,拖了约20年才最终离婚。

(11)、西方的所谓“上帝”其实可以约等于中国的“道”,道生一生二生三生万物。万物之中,有黒有白,有方有圆,有“有”有“无”。有之以为利,无之以为用,因其“有”,成其“利”,因其“无”,成其“用”。翻译成人话就是:“不能”也是上帝“能”的一种。上帝全能,当然能创造出他所“不能”的存有,因为这也是包含在全能之内的。

(12)、由于篇幅浩繁,罗素将手稿装了两个箱子,雇了四轮马车运到剑桥大学出版社(CambridgeUniversityPress)。出版社对出版这部巨著的“利润”进行了评估,得出一个很不鼓舞人心的结果:负600英镑。当然,剑桥大学出版社并非唯利是图的地方,他们愿意为这样的巨著赔上一些钱,问题是600英镑在当时实在是一个不小的数目,他们只能承担一半左右——即约300英镑。剩下的300英镑怎么办呢?在罗素与怀特海的申请下,皇家学会慷慨解囊,赞助了200英镑。但最后的100英镑实在是没办法筹措了,只能摊派到罗素和怀特海这两位作者头上,每人50英镑(相当于2006年的7,000多美元)。对于这一结果,罗素在自传中感慨地写道:我们用10年的工作每人赚了负50英镑。

(13)、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。

(14)、至此,罗素悖论就像一个病毒一样侵入了完美的形式系统中,后来的逻辑学家、数学家试图解决了这个病毒,解决方法很复杂就不展示了,结果就是:这个病毒被驱除出去了。

(15)、这句话里的“我”是主体,“不给自己理发的人”是作为主体“我”的对象性关系的人,而作为主体的“我”本身构不成自己的对象性关系,主体只是主体,主体与主体的对象性关系这是同时存在的。

(16)、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。

(17)、因此,我们有理由也会有一个“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。

(18)、“披萨”这个词也不是自然数,所以它是集合成员。

(19)、任总还进一步提出“云、雨、沟”思想,他认为香港在过去100年的发展中,真正把西方的管理体系融会贯通,并内生成规范的管理机制,这就是一条条“沟”。所以,华为公司的管理哲学,就是天上的“云”,管理哲学、战略诉求、行业环境等内外在因素,共同形成公司运营的“雨”,云下的雨不能到处乱流,而应沿着“沟”流,才能保证执行的速度与质量。

(20)、举例子来说,可以加入罗素集合的是:“薛饿热心观众集合”、“运动鞋集合”,因为首先他们满足条件:得是个集合;其次,自己并不是自己的成员。因为“薛饿热心观众集合”的性质是个“集合”,“集合”这个东西又不能观看节目,所以不属于薛饿的热心观众;同理,“运动鞋集合”的本质也是一个“集合”,不是鞋子本身,所以也不是运动鞋这个集合的成员。

3、罗素悖论解释

(1)、这种混论与悖论是进化得到的,简单系统不存在悖论,而人类思维是一个复杂到足够产生自指的系统。不过,一般的复杂系统(比如生物)也具有自指的能力,但它们往往有某种机制来阻止毁灭性自指的发生,而人类思维却能主动制造出这种毁灭性自指。

(2)、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。

(3)、所以要想真正理解罗素悖论,理发师悖论只是起过渡作用的,正式理解必须要理解罗素悖论的集合论表示。

(4)、https://www.businessinsider.com/how-russells-paradox-changed-set-theory-2013-11

(5)、按照科斯交易成本理论我们再来看看互联网,互联网向企业提出的根本问题是什么?互联网企业是降低了市场交易成本还是降低了企业内部交易成本?互联网时代企业内部交易成本还能否低于市场交易成本?还有没有可能低于市场成本?互联网时代企业存在的理由,就是你的交易成本要低于市场交易成本。

(6)、所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。德国的著名逻辑学家弗雷格在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。

(7)、19世纪末,康托尔发表了一系列关于集合论的文章,他创建的集合论是数学史上最具有革命性的理论之令人难以置信又无法反驳。起初他的集合论遭到了很多数学家的批判,甚至有人将他的理论视为异端。终于,在20世纪初,集合论才得到了公认,学界相信集合论是非常完备的理论,甚至可以说是整个现代数学的基础。

(8)、吃饭的时候,我旁边坐着一个老总,问我“蓝血十杰”是谁?可能有一些在座的企业家不知道“蓝血十杰”是谁,“蓝血十杰”是二次大战时期美国陆军航空队的“统计管制处”的十位精英。

(9)、再复杂点,我们还希望考虑“诸多集合的聚集”(collectionsofsets)。

(10)、蛇对女人说:“你们不一定死,因为,神知道,你们吃的日子眼睛就明亮了,你们便知神能知道善恶。”(《圣经》创世纪第三章)

(11)、如果这个集合包含自身(A∈A),那么,因为A是不包含自身的集合组成的集合,即A∈{x∉x},那么A应该不包含自身,也就是说A∉A;

(12)、实际上,我们做的每件事情都可以看作是执行一个程序,而人类心智是控制每一个程序终止和自由切换的主宰者,人类可以自主地跳出每一个系统,无限的反思便是从一个子系统到另一个更大的子系统的递归过程。

(13)、1903年,一个震惊数学界的消息传出:集合论是有漏洞的。这就是英国数学家罗素提出的著名的罗素悖论。罗素的这条悖论使集合论产生了危机。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。

(14)、搬运翻译工:Suhrawardi(剑桥大学神学博士)

(15)、因此,对这个论证的解决方法也必然是同一个方法,认为在运动中领先的东西不能被追上这个想法是错误的,因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。

(16)、在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

(17)、而他的另外一部著作《算数的基本规律》则直接跟我们探讨的“罗素悖论”相关。这要从弗雷格对自然数0的集合论定义说起。弗雷格将自然数0定义为所有不包含自身的集合(类)组成的集合(类)。

(18)、问题是:他能不能创造出自己所不能举起的石头。换言之,也就是,这个全知全能的存有,是否能创造出自己所“不能”的存有。

(19)、作为哲学爱好者,大家应该或多或少了解一些语言悖论,其中最著名的就是“说谎者悖论”。“我在说谎”这个句子是真是假?如果这个句子为真,那么“我在说谎”,所以这个句子为假,矛盾;反过来如果这个句子为假,那么“我没有说谎”,所以这个句子为真,也矛盾。

(20)、不过,作为偷吃禁果的惩罚,拥有自由意志的人类也受到到了诅咒:

4、罗素悖论 解决

(1)、理发师悖论可以表达成集合论的形式,就是罗素悖论。R={x|x不属于x},然后现在问R是否属于R。如果R不属于R,那么根据定义,R属于R;如果R属于R,那么根据定义,R不属于R。

(2)、在这样一个例子中,我们可以看出自指的行为实际上导致了跳出系统的结果。换个更易理解的方式,我们将“没有什么是真理”作为一个程序,这个程序的作用就是将所有遇到的东西都判定为非真理,如果我们在程序系统内,那么永远不会碰到自己,因为一旦碰到自己,程序就摧毁了!

(3)、“蓝血十杰”代表了科学管理和批判性思维精神

(4)、我只给那些“不给自己理发的人理发”,我与“不给自己理发的人”是一个客观存在的关系。我不可能与我自己发生关系,因为我作为我自己,不存在对象性的问题,否则,那我岂不成了两重身份,两个幻身,可以同时存在两个地方的神怪之物了嘛?

(5)、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。

(6)、概括起来包括四个方面:第一个是基于数据和事实的理性分析和科学管理。按照“蓝血十杰”的管理哲学,事实都是可以度量的;不能够度量的事情就不是事实,最多是一种现象。第二个是建立了在计划、预算、流程和利润中心基础上的规范的管理控制系统。据说这次从中央到地方财政部门,都在大力推行的一件事情,就是管理会计,管理会计的重要性恰恰是在预算、计划流程和责任中心基础上建立起一套管理系统。第三个是重新定义了财务部门的功能,使之在传统的会计和融资功能基础上,承担起成本分析、利润分析、投资决策等现代管理会计的职责。第四个是客户导向和力求简单的产品开发策略。

(7)、亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。

(8)、可是实际上,这里不存在矛盾,只是逻辑思维上的抽象的人取代了现实的关系的人而已。属于人为的逻辑矛盾。这是混淆概念的问题。也就是说,所谓的“理发师悖论”的出发点就是假设的前提条件,而非尊重客观现实的条件,这就是问题的关键所在。

(9)、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。

(10)、所谓的发现观,就是数学理论本来就在那里,就像是客观真理或者上帝旨意,而数学家发现了它。所谓的发明观,就是数学理论本来是没有的,数学家发明了它构造了它甚至可以改变它。

(11)、罗素悖论还有一些更为通俗的描述,如理发师悖论、书目悖论。

(12)、1897年,25岁的罗素撰写了一本关于几何的书:《论几何的基础》(AnEssayontheFoundationsofGeometry),随后又开始构思一本有关数学基础的书:《数学的原理》(ThePrinciplesofMathematics)。这本中译名仅一字之差,英文名也有些相近的书是《数学原理》的前身。仿佛在预示《数学原理》将要让罗素受“罪”,《数学的原理》一起头就不顺利,几次努力都止于片断。这一局面直到1900年8月罗素在巴黎国际哲学大会(InternationalCongressofPhilosophy)上遇见意大利数学家皮亚诺(GiuseppePeano)才有了被他称为“智力生活转折点”(aturningpointinmyintellectuallife)的改变(注二)。

(13)、如果把所有的集合分成两类:一类不以本身为元素,另外一类以本身为元素。设第一类集合的并集为R,若R属于R,那么根据之前的定义,R必须不能是R的元素;同样地,若R不属于R,那么根据定义,R必须是R的元素。由此构成悖论。

(14)、设这个集合为A,则A∈{x∉x}.那么,问题是:“不包含自身的集合所组成的集合,包不包含自身”,也就是A∈A?还是A∉A?

(15)、罗素悖论,及其在“现代公理化集合论”(modernaxiomaticsettheory)中的解决,展现了我们对于数学的理解,如何随着时间而进化和精细化。

(16)、那些年,罗素常到牛津附近一座跨越铁路的桥上去看火车,在情绪悲观时,看着一列列火车驶过,他有时会生出可怕的念头:也许明天干脆卧轨了结此生。不过这时候,使他悲观厌世的《数学原理》却又变成了让他活下去的动力,因为每当黎明来临,他又会重新燃起希望:活下去,“也许某一天能完成《数学原理》”。

(17)、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”

(18)、哥德尔的证明建立在一个前提下:该系统足够复杂,复杂到可以用符号来表示自指行为。换言之,简单系统是没有自指能力的!人类思维显然足够复杂,自指就不在话下了,但是问题是:除了人类思维系统,其他系统是否具有自指的能力?答案也是肯定的,就比如哥德尔证明的一阶语言系统就可以表示自指。

(19)、一旦开始将集合构筑在其他集合(即,大集合套着小集合),早期集合论者,便开始考虑一个有趣的命题——一个集合能否包括其自身,作为一个成员?(即,自含集合,a self-containingset)

(20)、正当数学家们觉得没有人比他们更懂集合的时候,英国哲学家柏兰德·罗素提了个问题:有没有不是集合的整体?也就是说,宇宙万物中,有没有不可能被放在一起考虑的一类东西?

5、罗素 悖论

(1)、小丑也是人,也应该有享乐的权利呀!于是,这些小丑决定为自己办一个“小丑宴会”,专门招待那些“没资格在自己表演后留下来参加宴会的可怜小丑”。到这里,这个宴会没有任何问题,完全可以顺利开展。但他们做了一件足以搞砸这个宴会的举动,就是为这场宴会又安排了一个开场小丑表演,演出者就是我们的故事男主角乔治。

(2)、1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。

(3)、简而言之,宴会的规则预示着这样一个矛盾的现象:“小丑乔治当且仅当他没资格参加宴会的时候,才有资格参加宴会”。这就是一个悖论。

(4)、因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论最终回归到一个问题,是谁替代谁的问题。

(5)、加利福利亚州也不是自然数,所以我们也会把它扔进集合。

(6)、如果没有什么是真理,那我的这个观念是不是真理?

(7)、这个故事的原型是博弈论中一个很经典的逻辑悖论—意外绞刑悖论。讲的是一个囚徒即将被执行死刑,法官宣布:“下周七天中的某一天将对你处以绞刑,你不会猜到具体是哪一天,我会保证行刑日会毫无准备地到来,完全出乎你的意料。”

(8)、“我又叫你和女人彼此为仇,你的后裔与女人的后裔也彼此为仇……你必汗流满面才得糊口,直到你归了土,因为你是从土而出的,你本是尘土,仍要归于尘土。”(《圣经》创世纪第三章)

(9)、也正是因为这种主动的自指能力,所以人才成为人!换句话说,因为自由,所以混乱(悖论)!那么,从这个意义来看,语言既是魔鬼也是天使!

(10)、现在我们来想想和人类思维系统更接近的动物,一只狗的思维系统是否复杂到足以存在自指的可能?这个答案无法直接给出,但是我们可以合理推测:一个细胞的自复制系统都复杂到足以存在自指的可能,那么由无数细胞组成的动物也应当具有自指的能力。

(11)、我们遇到了一个矛盾:“所有‘不’自含集合的集合”,同时必须既“是”又“不是”自己的一个成员。

(12)、不过,罗素悖论已经通过许多技术性处理在数学等形式化系统中被消除了,而人类语言的悖论呢?有人会说,我们可以下一条命令,让所有人说话的时候都不自指,真是异想天开!思维难道会因为你的命令而停止自指?

(13)、现在问题就来了,乔治表演完毕后,究竟有没有资格留下来参加宴会呢?如果他可以留下来参加,那么就违背了宴会的招待原则,因为宴会只招待那些“没资格在自己表演后留下来参加宴会的小丑”;而如果他被大家赶走,不能参加宴会,那么他就是典型的“没资格在自己表演后留下来参加宴会的小丑”了,他就符合参加宴会的标准,应当留下来了。那么,他到底该不该留下来?

(14)、我们可以把类理解成为是由若干元素组成的一个整体。一个类是否是另一个类的元素是完全确定的,这就是类元素的确定性。类A如果不是类B的元素,则称A不属于B。

(15)、分享人:黄卫伟,华夏基石管理咨询集团领衔专家,著名经济学家和企管学家,华为首席管理科学家

(16)、这个悖论有趣的地方在于,即使囚徒用无懈可击的逻辑推理出了“出乎意料的行刑日”并不存在,但是如果在周二或者别的什么日子被押向刑场,他依然会感到意外,因为他在那天早上依然不知道今天自己会被处死。事实上,当囚徒用严密的逻辑推理出自己不会被绞死时,也就意味着无论哪一天被绞死,他都是意外的。关于这个悖论,哲学家迈克尔·斯克里文曾写道:“逻辑的力量遭到事实的否决,我觉得这正是这个悖论的迷人之处。可怜的逻辑学家念着过去屡试不爽的咒语,但是事实这个怪兽听不懂咒语,执意前行。”

(17)、十九世纪下半叶,德国数学家康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。

(18)、在这,我似乎和前面的结论矛盾了:自指和跳出系统似乎并不是人类思维特有的性质!所有足够复杂的系统都具有这样的性质(可能性)!?

(19)、第一桩跟个人兴趣有关,起因于怀特海夫人伊夫林·怀特海(EvelynWhitehead),而且发生得很突然。怀特海夫人年轻时经常被类似心绞痛的病痛所折磨,1901年上半年的某一天,罗素亲眼目睹了怀特海夫人遭受剧烈病痛折磨的情形。那情形对罗素产生了极深的影响,他从怀特海夫人孤立无助的痛苦中,深切意识到了每个人的灵魂都处在难以忍受的孤独之中。这一意识——用他自己的话说——让他感觉到“脚下的大地忽然抽走了”,使他在短短五分钟的时间里“变成了一个完全不同的人”,由撰写《数学原理》所需要的一味追求精确和分析“涣散”为了对人生和社会哲学也有了浓厚兴趣(注五)。

(20)、伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。

(1)、任正非在2009年提出“七反对”原则,经过十几年的持续努力,管理变革取得了显著的成效,基本上建立起了一个集中统一的管理平台和较完善的流程体系,支撑了华为公司进入世界信息与通讯技术产业的领先行列。

(2)、小丑乔治承诺要在周一至周五来一场让大家难以预料的“突如其来”的爆炸。虽然小丑们用严密的逻辑推理出突如其来的爆炸并不存在,但乔治还是做到了。这是怎么回事呢?

(3)、一个视角的改变,就改变了整个世界。你不是主张自由市场吗?你不是主张看不见的手吗?看不见的手如果可以解决问题那还要企业干什么?所以,两个问题都归结到一个本质上的问题,就是讲市场和企业要看到两种可以相互替代的组织形式。这个里面关键是交易成本。谁的交易成本更低,谁就替代另外一个。

(4)、我们可以将上述细胞的自复制系统和前面的形式系统联系起来,因为细胞自复制系统足够复杂,所以它隐藏着毁灭自身的可能性(自指),但一般而言为了保持自身的存在它不会让毁灭性的自指行为发生,所以细胞常常使用一些特殊标记来识别自身的DNA以防受到病毒的攻击。

(5)、基于这两种不同的数学哲学基础,面对悖论问题时,可以得出很不相同的分析方式和解决方式。一百年前出现罗素悖论的时候,数学家们普通接受“发现”的数学哲学观点,当数学出现悖论的时候,就觉得天塌下来了:我的上帝,是不是客观真理出问题了,或者上帝旨意出问题了?如果是以维氏“发明”的数学哲学观点,就觉得没有什么大不了的,根本不是客观真理出问题了,而是数学家主观观念出问题了。数学家构造的规则矛盾了,在矛盾的地方再构造一个新规则就是了。

(6)、周杰伦有首歌叫《乔克叔叔》,唱出了小丑这个职业的悲凉:

(7)、大家请注意,这并不是截然不同的两个句子,第二个句子只是第一个句子的一种特殊情况!因为当我们说“这不是真理的时候”,“这”是可以任意代入的,如果有上下文的话我们可以准确地找到“这”指代的内容,没有上下文,“这”就可以任意指代。

(8)、这个就有点麻烦了。假设罗素集合是它自身的成员,那么它就应该符合条件2“不是自身的成员”;而如果假设罗素集合不是它自身的成员,那么它就既符合条件1“是个集合”,又符合条件2“不是自身的成员”,那么它就完全应该加入“罗素集合”呀。

(9)、书中涵盖99个或经典或冷门的思想实验、逻辑悖论、哲学迷思。那些你在浴室里一闪而过的不成形的思考,或者关于人生观、道德观的不方便找人倾吐的困惑,说不定就会在书里找到解答。有兴趣的朋友可以戳下面的小程序卡片购买。

(10)、关于没有定义,可以展开一下。例如对于变量x没有任何定义,这是缺少定义;对于x定义为x,这是重言定义;对于x定义为(x=0ifx=1andx=1ifx=0),这是矛盾定义。这三种定义,都没有给出正确的定义。

(11)、比如,在小丑乔治的故事里,为了打破悖论,我们必须要将没资格参加自己表演后的宴会的小丑和没资格参加“没资格参加自己表演后的宴会的小丑”的宴会的小丑分开看待,这两个集合是存在“层级鸿沟”的。我们不能像故事中小丑们的逻辑那样:如果乔治属于第一个群体就自动推出他也属于第二个群体。如果罗素也在场,告诉他们这两个群体根本不是一个层级的,不能放在一块考虑,小丑乔治的处境就不会那么尴尬了。